2% voucherify

Resiliency & Security

In this document, we showcase the robustness of Voucherify in terms of reliability and
resilience. Voucherify consistently supports F500 enterprises during high-demand
events, such as Black Fridays, Cyber Mondays, and the holiday season, with no service
disruptions.

Voucherify is a cloud-native Saa$S product, designed to serve multiple clients
concurrently. The cloud-native approach is at the core of our development philosophy.
Voucherify gives you access to a collection of promotion & loyalty REST APIs and a
visual Dashboard. For over a decade now, Voucherify has been creating a scalable,
dependable, and secure product that is highly resilient against security risks and
downtime.

Within this document, we delve into the fundamental architecture of Voucherify,
highlighting key aspects of our microservices approach, detailing our backup and
recovery strategies, and presenting our exceptional customer support services. At
Voucherify, we have unwavering confidence in our product, and our goal is to instil the
same level of confidence in you.

*
x B aws

A<\

* *

* GDPR * ISO Qualified
v d

Software

* *
* o X 27001

Table of Contents:

2-3

4-6

7-8

9-10

11-12

13-14

15

16-19

20-22

Introduction: Get a glimpse of Voucherify architecture.

Cloud architecture: Explore cloud services and availability zones.
Microservices: Learn more about REST APIs and MACH Alliance.
Software development: See why we do data sharding, DDD, and CQRS.
Tenancy: Explore differences between single- and mulitenancy.

Cloud capabilities: Learn how Voucherify handles traffic spikes.
Software bugs: See our processes to identify and fix bugs.

Data backup & recovery: Explore our processes for data recovery.

Support & data security: See how our engineering teams ensure the
stability and resiliency of Voucherify.

What is Voucherify?

Voucherify is an API-first Promotion & Loyalty Engine that helps companies launch and
manage personalized coupons, gift cards, auto-applied promotions, loyalty programs,
and referral campaigns.

Voucherify gives you access to a collection of promotion & loyalty REST APl endpoints
and a visual Dashboard.

Every integration is unique — however, at its core, the integration of Voucherify with your
system relies on passing relevant context to Voucherify API, which validates and
redeems incentives and rewards in accordance with the rules you set up with our
comprehensive Rules Engine.

As a MACH-certified vendor, Voucherify follows the principles of composability, giving
you flexibility and decreasing the time needed for integration.

CRM & CDP Website
S i Banner
g\ Status /u VOuCherlfy gl
4 Customer = Gold Member
ERP & PIM e

Total order > €80.00

Product data Discount

E Sl Discount = 15% OFF [G

Add points 2x Order Total

Checkout Assign promo code THANKS746 Loyalty points Dlgltal Wallet
E Transaction else Discount = 5% OFF 6
L)

% voucherify

Basic Architecture

This section provides an in-depth look at Voucherify's multi-tenant, cloud-native, and
microservices-based architecture. Our architectural approach aligns with the latest
industry standards, enabling us to maintain agility in our design while bolstering our
resilience to potential failures.

The diagram below illustrates the sophistication of Voucherify's microservices-based,
cloud-native architecture.

* D) §0
P e \ B

RDS/Postgress Elastic Cache/Redis Open Search Kafka
Multi-AZ Multi AZ Multi AZ Multi AZ

(2]
o £
EC?2 < O
(7]
)
O AZ
S a
o X
o
x 3
g4
Q%

Web Application
Firewall

Elastic load
balancing

Amazon
Route 53

Cloud Services

Voucherify is using Amazon Web Services (AWS) as a 3rd-party vendor, which runs in a
multi-tenant, geographically distributed environment to support the availability of
services through the use of redundant architecture. Voucherify is an official AWS partner.

As Voucherify utilizes an Infrastructure as Code (laC), the whole infrastructure can be
rebuilt and recovered to the previous working state. Also, any change can be reverted
back if necessary.

The illustration below offers an overview of how Voucherify's architecture integrates and
collaborates within the cloud environment.

Application Development)

N Y

Application Packaging Business User Tooling

Container Orchestration

a

\ Infrastructure)

(Security

{ Load Balancing SDKs Js'a @aN.E%DM
3

(API Management

(High Availability

a

Monitoring APls

(Backup / Restore

WA A WA WA WA WA WA WA WA W

Routine Upgrades

% voucherify

Regions and Availability Zones

Cloud architecture empowers the distribution of hardware infrastructure
worldwide through regions. In our software stack, most of our services
capitalize on a minimum of three Availability Zones within each Region. This
cloud deployment strategy inherently safeguards against application node
failures. Consequently, hardware failures become a non-issue as they are
automatically managed, and cloud providers maintain redundancies.

Regions represent distinct geographic areas comprising multiple Availability
Zones. Each Availability Zone serves as a deployment zone for cloud resources
and is treated as a discrete failure domain. These zones are physically separated
with independent network connections and power supplies. However, they are
strategically positioned within a region to ensure network latencies of single digit
milliseconds for a round trip. Availability Zones enable cloud deployments to
achieve full active/active availability within a region.

REGION

Availability Zone Availability Zone

-

Data center Data center J tData center Data center Data center

Low latency resilient
fiber connectivity

Availability Zone

Data center Data center

% voucherify

Simply being in the cloud does not automatically utilize the benefits of
Availability Zones. Customers retain the flexibility to deploy on-premise
applications within a single cloud zone. However, when applications are not
specifically designed to be cloud-native, customers may find themselves
constrained by this deployment model. Opting for such an approach might mean
missing out on some of the inherent advantages that cloud computing offers.

In every designated region, a minimum of triple redundancy is maintained,
guaranteeing uninterrupted service for each individual component (such as
applications, databases, etc.) irrespective of hardware failures, system glitches,
or zone disruptions.

Availability Zone A

Avoid unnecessary Ability to Replicated data

dependencies fail over layer

End User Elastic Load
Balancing 3

Web server Application server Database server

Availability Zone B

% voucherify

Independent APIs Backed by
Microservices

Our product features are delivered through autonomous REST APIs supported by a
number of microservices. Those are managed by a Kubernetes cluster, and each REST
API microservice has a minimum of two replicas distributed across at least two
Availability Zones. Thanks to a Rolling-Update policy, there is zero downtime for
deployments, as there is always a minimum number of applications that can handle
incoming traffic.

We also host microservices which act as Kafka queues consumers and producers.
Those applications take care of asynchronous processing, events, side effects, and
more.

This architectural approach empowers specialized teams to implement updates through
separate development and release cycles, ensuring agility. We have incorporated
Continuous Integration and Continuous Deployment (CI/CD) pipelines for our services.
This methodology harnesses automation and lifecycle monitoring to streamline the
process of introducing code changes into production, facilitating secure deployments to
production environments within minutes.

MULTIPLE RELEASES/DAY TO PRODUCTION

Datastore

Infrastructure

Qualification

Validation Loyalty

% voucherify

Microservices v onoliths

Voucherify follows the microservices approach. Contrary to the monolithic structures
where all processes are interconnected, microservices are designed as standalone
units.

Each unit, like Qualifications API, operates independently. They interact subtly -
changes in one of them are tracked by another. However, a failure in one does not
cripple the other. For instance, if the Qualification API encounters issues, it affects only
its direct users, while the Vouchers API, continues its operations undisturbed.

This modularity contrasts with monoliths where a failure in one piece can lead to the
system collapse. In Voucherify, compartmentalization not only enhances resilience but
also streamlines development.

While microservices largely prevent cascading failures, certain critical services, like
Authentication service, play pivotal roles. A malfunction here would not halt other
services but would impair their functionality, notably in APl authentication. Recognizing
such Single Points of Failure is crucial, underscoring Voucherify’s resilience compared to
monolithic counterparts. Aware of potential Single Points of Failure, we adopt multiple
strategies to mitigate risks.

What is MACH Alliance?

The MACH Alliance is an industry body that advocates for open and best-of-breed
technology ecosystems, empowering businesses to transition from legacy

infrastructure to a composable approach. The MACH name comes from its goal to
promote tools that are Microservices-based, API-first, Cloud-native and Headless.
Voucherify was built on these principles from the get-go, and was the first
promotion engine to join the Alliance in 2020.

Database Sharding

Database sharding empowers us to create a horizontally scalable data
infrastructure on-demand, surpassing the limitations of conventional virtual
machines. We have implemented data sharding in Postgres (partitioned tables),
ElasticSearch (shards), and Kafka (topic-partitions).

Carts Products Orders
What is database sharding?

In distributed systems, data is

< -
& -‘ﬂ often partitioned, or 'sharded,’

into keyed partitions that are
distributed across a large number

of virtual machine instances and
0-1000 1000-2000 9999-... disks.

Domain-Driven Design (DDD)

Domain-Driven Design (DDD) is an approach to software development that
emphasizes modelling software systems based on the real-world business
domain they serve. It encourages creating a shared, well-defined vocabulary
and breaking down complex domains into manageable components called
bounded contexts.

DDD distinguishes between entities and value objects, uses aggregates to group
related objects, and employs domain events, services, and repositories to
represent and interact with domain logic. DDD helps align software architecture
with the intricacies of the business domain, fostering collaboration between
domain experts and developers to build software that accurately reflects real-
world complexities.

% voucherify

Command Query Responsibility
Segregation (CQRS)

Voucherify uses the Command Query Responsibility Segregation design patterns,
which ensures that data is not treated the same way for writing and reading operations.
In this pattern, incoming update requests are processed and transformed into multiple
events. A response, if needed, is given immediately, and other events are then delivered
to independent microservices (like Kafka) for asynchronous handling. This approach
minimizes the load and maximizes resiliency.

CQRS significantly elevates our Voucherify’s availability by allowing each data store to
scale independently. Datastores for handling write operations are configured differently
from those for read operations.

Client

Read
Query model

Our architecture uses two types of data consistency: strong consistency and eventual
consistency. Strong consistency ensures that changes take effect immediately after the
APl returns a response. In contrast, eventual consistency, processes an API call that
modifies an entity by queuing it for later dispatch as an event (this is performed
leveraging external tools like Kafka).

=

By harnessing both strong and eventual consistency, Voucherify can handle a
substantial volume of API requests efficiently, balancing the need for immediate updates
with scalability and responsiveness.

% voucherify

10

Multi-tenancy

Voucherify is designed to be multi-tenant,
allowing multiple customers to share
infrastructure and application resources securely
without accessing each other's data. To achieve
this, we implement logical data isolation in the
shared RDS instance, based on the tenant ID and
project ID properties. Access to these separate

SINGLE-TENANCY

One company

-

l

Dedicated Datastore

MULTI-TENANCY

Multiple companies

projects is managed through API credentials. |

Frequent
product releases

Highest possible
security:

one stack to
manage, not one per
tenant

Access functionality
any time

Higher availability,
globally
distributed

Better support due
to one codebase
for provider to
support

Low TCO,
incremental licensing

model, no fixed overhead

Shared Application Instances

l

Shared Datastore

Our multi-tenant system offers significantly
higher limits than a single-tenant system.
However, there are still limits, and is a tenant
exceeds these limits, we automatically detect
and mitigate the issue by restricting the
resources allocated to that tenant (APl Rate
Limiting).

Due to our resilient and secure multi-tenant
solution, we do not perform one-off
deployments. This approach ensures a
consistent experience for all customersin a
region and allows immediate access to
performance enhancements and fixes.

% voucherify 11

Self-service customers can choose the following multi-tenant clusters located in:

o

Europe (Ireland)

O Asia (Singapore)

O US (East Coast)

For Enterprise customers, we offer dedicated clusters in the following locations:

Q0000000000000 0

Canada (Central)

Canada West (Calgary)
US East (Ohio)

US East (North Virginia)
US West (North California)
US West (Oregon)

South America (Sao Paulo)
Europe (Frankfurt)

Europe (Zurich)

Europe (Stockholm)
Europe (Milan)

Europe (Spain)

Europe (Ireland)

Europe (London)

Europe (Paris)

Q000000

Asia Pacific (Hong Kong)
Asia Pacific (Tokyo)
Asia Pacific (Seoul)

Asia Pacific (Osaka)
Asia Pacific (Mumbai)
Asia Pacific (Hyderabad)

Asia Pacific (Singapore)

o

Q00000

Asia Pacific (Sydney)
Asia Pacific (Jakarta)
Asia Pacific (Melbourne)
Africa (Cape Town)
Israel (Tel Aviv)

Middle East (UAE)

Middle East (Bahrain)

% voucherify

12

Cloud Security

Cloud service deployments offer efficient environments and streamlined processes for
updating services with significantly fewer assets. Unlike on-premises setups, cloud-
native solutions reduce the substantial risks associated with securing, managing, and
funding infrastructure, facilities, and networks. Our cloud-native services enable swift
deployment of crucial code updates to a minimal set of systems, substantially reducing
the time required for time-sensitive changes.

Furthermore, our native cloud services significantly trim the inventory of infrastructure
software to manage and protect, maintaining a modest system footprint well below that
of on-premises environments. By leveraging Kubernetes in the cloud, we eliminate the
need to secure servers as hosts. With our cloud-native services, customers are relieved
from overseeing the vast scale and complexity of infrastructure, hardware, and the
scope of vulnerabilities linked to on-premises services.

In essence, we alleviate the burdens and security risks
inherent in enterprise operations associated with
on-premises systems. Our customers no longer
need to shoulder the extensive controls, efforts,
operations, monitoring, and management
required to secure on-premises products,

all while upholding our unwavering standards

of resiliency.

13

Handling Traffic Spikes

Voucherify consistently supports F500 enterprises during high-demand events, such as
Black Fridays, Cyber Mondays, and the holiday season, with no service disruptions.

You can check out historical uptime via the

We understand the challenges of traffic management in a SaaS environment. In order to
decrease the negative impact of unexpected traffic spikes, we implement several
safeguards at Voucherify:

o - Voucherify operates with substantial resource buffers, maintaining usage at around
50% capacity for handling sudden traffic increases. Together with Horizontal Pod Autoscaling in
Kubernetes, this safety margin is our first line of defense, allowing us to quickly (30-45 seconds) scale
up the number of application pods (replicas).

o — made possible thanks to the AWS cloud hosting and our stateless apps' architecture -
spinning up a new AWS node and making it available for the Kubernetes cluster takes between 1-2
minutes, booting up a new application takes 15-30 seconds, scaling up Postgres databases takes
minutes to hours and is conducted with zero-downtime thanks to our multi-AZ setup with failover
configuration.

O - limiting strategies (per-minute buckets, per project), which can help throttle
uncontrolled bursts (e.g., misconfigured 3rd-party integrations), without affecting your standard
legitimate traffic. On top of that, with the option to use separate API keys (e.g., one API key per
integration) it is easier to quickly pinpoint and deactivate a faulty integration.

—internal caching on multiple levels (including in-memory, Redis, Postgres).

(<<

- offloading non-critical operations to our queuing systems for async processing.
This technique does not only allow for faster API responses, but also allows for batch processing,
which is more resource-efficient, and it offers retrying in case of failures.

o - engineering support during migrations and planned traffic peaks.

% voucherify

https://status.voucherify.io/history

Software Bugs and Misconfigurations

Voucherify has adopted a multi-tiered methodology to guard against bugs and
misconfigurations. These include thorough code reviews, rigorous automated testing,
and staged deployments via ClI/CD methodologies. Changes undergo detailed
validation in staging environments before production rollout. We deploy changes
incrementally, starting with one cluster, to minimize potential disruptions. In case of a
detected bug in production, swift rollbacks (that take less than two minutes) are in place.

Infrastructure misconfiguration

Our infrastructure configurations are
versioned and applied during a
deployment. Should a misconfiguration be
introduced, we can easily roll back to a
previous version. For time-critical
situations, we can apply manual changes.
These changes are always done with at

least two engineers managing the change.

Database resilience

Our reliance on AWS Postgres RDS with
multiple availability zones supported
shields us from most database-related
outages. Deployed across multiple
availability zones, it offers automatic
failover and recovery. In extreme
scenarios requiring data rebuilds, we have
comprehensive backup systems in place.
In case of a catastrophic failure, we can
easily create a new Postgres cluster with
a backup from AWS RDS.

% voucherify

Stateless Component Failure

Each service, particularly those handling
API requests, is stateless and distributed
across multi-zone Kubernetes clusters. It
means that individual failures only affect
ongoing requests. Kubernetes swiftly
replaces failed instances, and our multi-
zone setup guarantees continuity even in
the event of a zone failure.

Utilizing Managed Services

We also leverage other cloud-managed
services like Load Balancers for optimal
performance and reliability, ensuring we
always have the most effective solutions
without overburdening our engineering
team.

15

Data Backup

Voucherify has three primary components: data,
infrastructure, and application. Our key principle
is to engineer these components to be as stateless
as possible. Data backup is central to our backup
and recovery strategies.

A mission-critical part of our data resides in AWS
RDS databases which provide an automatic data
back-up (full copy of the database and incremental
snapshots) created every 24 hours and kept for 7
days. For additional safety, we use AWS Backup
that copies the backups to a Backup Vault located
on a separate AWS account, with very limited user
access.

We also automatically back up other services:
search engine, cache, and application logs. Search
and cache can be recreated from scratch from RDS
data, but to speed up the potential recovery, we
perform backups of these services independently -
daily, with 7 day retention.

Our backup routine follows the 3-2-1 backup
principle. This involves maintaining a minimum of
three copies of our data, storing two copies on
distinct storage media, and ensuring one copy is
kept offsite.

% voucherify

Maintain at least
3 copies of your data

Keep 2 copies stored
at separate locations

Store at least 1 copy
at an off-site location

16

Data Recovery

Our backups occur automatically, but the data recovery process is manual,
tailored to the unique nature of each incident to ensure optimal service
restoration. We adhere strictly to our Service Level Agreements (SLAs) for
Recovery Point Objective (RPO) and Recovery Time Objective (RTO) to
guarantee the prompt reinstatement of functionality.

In-Region Recovery

In the unusual event of an issue
progressing to production, our system is
designed for rapid identification and
rollback to a previously stable version,
resolving the issue before it affects
customers.

Should a rollback be impossible, we are
prepared to quickly develop and deploy a
corrective fix. The time to create a fix may
vary, but its deployment is swift — typically
within minutes.

Occasionally, a critical problem might
necessitate re-provisioning of a specific
service within the affected region and
loading up the data from the back-up. The
complexity of this task depends on the
service and parallels the steps in multi-
regional recovery, though focused on the
impacted service.

Multi-Region Recovery

Voucherify is equipped to initiate a
recovery in a different region if required.
An illustrative example is the recovery
procedure in separate cloud regions like
us-west-2 (Oregon) or eu-central-1
(Frankfurt) or any AWS region that offers
3 Availability Zones (vast majority of them
do).

It's important to note that regional
outages impact all SaaS applications in
that region, not just those deployed by a
particular vendor. Therefore, restoring our
services might not fully reinstate the
functionality of your entire solution.

J

% voucherify

17

We utilize disk snapshots for rapid customer data recovery. These snapshots are
transformed into new virtual disks in any region and zone within AWS and
attached to a new Postgres RDS cluster. This method speeds up recovery by
eliminating the need for data installation or synchronization.

Once such a new Postgres cluster is up, the applications’ configuration is
updated, and they are directed to switch to the new database host. Platform
configuration data is stored in a Git repository, encrypted, also separately
backed up every 24 hours.

Infrastructure Recovery Procedure

Our infrastructure details are managed via Terraform and tracked in Git
repositories. Every service, every connection between them, every property and
every bit of configuration is managed via Terraform modules. Terraform is used
to set up, for example, all RDS databases, Kubernetes clusters, ElasticSearch
services, Kafka queues, monitoring, logging and alerting systems and

dashboards, DNS records, load balancers, WAF firewalls, and more, in all regions.

This allows us to keep all Voucherify clusters uniform in terms of configuration
and keep track of changes, while at the same time parameterizing each cluster.

% voucherify

18

Application Recovery Steps

Post infrastructure setup and snapshot conversion to virtual disks, we begin

installing Voucherify’s microservices.

%’docker £3 kubernetes Q}git

This process mimics our standard CI/CD deployment, involving:

o Building Docker containers.
o Uploading containers to a Docker registry.

o Deploying these containers to Kubernetes.

Search Engine Recovery
Specifics

ElasticSearch is critical for powering key
services, such as customer profiles,
segmentation, and search.

Once the Voucherify apps are running, a
set of predefined scripts is executed to
ensure the search engine and caching
systems are in sync with the Postgres
database, our single source of truth.
These scripts are optimized for batch
operation, which guarantees a speedy
execution. Based on the data volume,
this phase takes 20-60 minutes.

% voucherify

o Configuring Kubernetes.

o Our Docker registry, which backs up all

containers to AWS ECR, is replicated across
regions. In recovery scenarios, we bypass
the initial two steps, speeding microservices
deployment.

Cutover

The new region will inherit all projects
and configurations from the failed region.
The final phase involves redirecting all
DNS records to the new setup. This
redirection occurs within the cloud
system, without the need for DNS
propagation, ensuring immediate traffic
rerouting. All URLs, Keys, and Secrets
remain unchanged. Client applications
will require no modifications and should
resume normal operation post-cutover.
However, a reboot may be necessary for
some client applications.

19

Performance Tests

Results

Recently, we completed performance tests for our prospects that proved Voucherify
can handle high traffic at a required response time speed, constantly. We proved

Voucherify can:

£l

Handle high traffic

2500+ transactions per
minute with fast API
response times (<50ms).

&
Support heavy
promotion load

3300+ promo codes/cart
promotion redemptions per
minute in a POS with median
response time of 100 ms per
transaction.

g)_@

Support sustained
load

4000+ transactions per
minute with fast response
times (avg. 100ms). Handles
12 000+ requests/minute
under sustained load.

$
LA
Scale in minutes

Voucherify can seamlessly
transition from a low-traffic
idle state to supporting a
surge of 3300+ customers
per minute within a mere 3
minutes.

5

Process loyalty
points quickly

Average 1 second delay
despite asynchronous
handling.

[wg

Update loyalty
balance near real-time

5000+ customers making
orders and checking their
loyalty balance per minute
with 1 second per
transaction.

*Test 1 included 1 million customers total (incl. 60k customers in a segment based on geo-location), a total of

100k voucher codes in a discount campaign (incl. 60k codes published to aforementioned customers) and

200 products with geo-location information stored in metadata.

**Test 2 included 5,000 customers making purchases every minute and subsequently checking their updated

loyalty points balance.

20

Voucherify's support is handled by experienced, full-time engineers dedicated to
offering SLA-guided incident responses. This team includes Customer Success
Specialists who oversee all of Voucherify's product-related inquiries.

By employing top-tier support tools in a cohesive framework, SRE and engineering teams
ensure efficient management of automated alerts and staff scheduling. Our internal
processes are consistently refined, drawing valuable insights from each incident to
enhance our efficiency.

In the case of a service interruption, customers can monitor the status of our products
via our API status page. This page also allows users to register for proactive
notifications of incidents or degradations. New issues can be reported via email, phone
or using the Community Chat, depending on the service plan.

Whenever Voucherify's automated monitoring
systems or on-call rotations identify issues in a
client's specific usage patterns, our support team
takes proactive steps by contacting the account
owner. It is highly advised that customers keep
their account owner details current.

In line with our commitment to ongoing
improvements, we regularly conduct post-mortem
meetings to review incidents. These sessions focus
on learning from process and technology,
bolstering our overall resiliency.

21

https://status.voucherify.io/
https://www.voucherify.io/contact-support
https://www.voucherify.io/community

Data Security

As an ISO-27001-certified company, Voucherify implements several security standards
and practices to protect your and your customers' data:

AWS cloud security (Virtual Private Cloud).

Encryption (AWS KMS, TLS 1.2, data encryption at
rest with AES-256).

Regular PCI scans, security audits, and pen tests
performed by a third party IT security company.

Web Application Firewall with active blocking
rules.

DDOS protection (connection limiting, WAF).
Login brute-force protection.

Logging and monitoring systems, along with
alerting and anomaly detection (Prometheus,
Grafana, NewRelic, CloudWatch, PagerDuty).

Role-based access and policy enforcement (AWS
IAM, VPN, access logs, periodic permission
reviews).

All critical systems secured with multi-factor
authentication and/or authenticating through
SSO (enforced).

@ coPracCPA compliance.

. Disaster Recovery Plan and custom disaster
recovery protocols defined in the SLA.

Two-factor authentication, strong password
policies, SAML.

Reliability and backup (RAID class hardware, AWS

S3).

Automated daily data backups; additionally,

. Redundancy of all underlying for High Availability.
. snapshots copied over to a separate AWS

account with limited access as an extra layer of

security. We continuously check whether

automated backups succeed and are available.
Moreover, the procedure of recovering data from

shapshots is tested regularly.

Contact our Customer Success team for a complete Security Architecture Model or the

recent pentest report.

Reach your campaign goals with
Voucherify experts

With support teams based across time zones and secure cloud servers on every
continent, you can expect ongoing support and personalized onboarding for both your
tech and non-tech teams.

We want you to succeed with Voucherify. To simplify the usage of our platform, we've
created resources such as Developer Documentation, Community Chat, User Guides,
and on-demand webinars. Our GitHub repositories also contain a lot of valuable
samples and tools.

O Technical Account Management team

‘ ' sales@voucherify.io

2% voucherify

https://docs.voucherify.io/docs
https://www.voucherify.io/community
https://support.voucherify.io/
https://www.voucherify.io/webinars
https://github.com/rspective/voucherify.js

